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Abstract
In  our  miniproject,  based  on  a  thought  experiment,  we  found  certain 

inequalities, known as Bell's  inequalities. Bell's  inequalities can be used to verify 
causality. We expected that causality is never violated in nature. We looked at what 
quantum  theory  predicts  and  found  that  the  predicted  results  violate  Bell's 
inequalities.

1 Introduction
At first  we should define what causality is.  The definition says  that 'causality denotes a 

necessary relationship between one event (called cause) and another event (called effect) which is 
the direct consequence of the first'. Let's have a look at how causality works in a particular thought 
experiment.

2 Thought Experiment
We imagine a situation where there are three people: Alice and Bob, who can't communicate 

with each other, and Cyril, who can communicate with both of them. (Figure 1)
Someone prepares  envelope (Figure 2)  for Cyril.  It  is  one big envelope in  which are  2 

medium envelopes and in each of the medium envelopes are 3 small envelopes. These are numbered 
from 1 to 3 and each of them contains either a red (R) or a blue (B) disc.

Cyril opens the big envelope and sends one of the medium envelopes to Bob and the other to 
Alice. Alice opens the envelope she has and chooses one of the 3 small envelopes, discarding the 
others. Now, Alice opens the small envelope she has chosen and checks whether there is red or blue 
disc. Bob does the same.

They keep  repeating  this  experiment.  Each  time  they  write  down number  of  the  small 
envelope and color of the disc and thus they create a chart. Such as this one for example:

Alice Bob

1 R 3 R

2 B 1 B

... ...



Now for each of the results there is certain probability of occurrence, which can be 
estimated with high accuracy if the experiment is repeated many times. Let these probabilities be 
denoted following the pattern, that the probability that Alice chose to open the first envelope and 
found a red disc inside, and that Bob opened the second envelope and found a blue disc is
p 1R ,2B=0 .

Let's now repeat the same experiment but with the envelopes prepared in given way. Now 
there is a condition that when we compare Alice's and Bob's medium envelopes, in small envelopes 
marked with same number can't be disc of same color. In other words, small envelopes of same 
number always contain different color.

Now we see that there are combinations which cannot appear in the chart Alice and Bob are 
making. Probability of these combinations is 0. Let's write these combinations down:

p 1R ,1R=0 p 2R ,2R=0 p 3R ,3R=0
p 1B ,1B=0 p 2B ,2B=0 p 3B ,3B=0

As well, based on the condition (different colors for same numbered small envelopes), the 
number of options how the envelopes can be prepared is limited. We create a table to note down all 
the possible combinations:

Type of large envelope 1st medium envelope 2nd medium envelope

a 1R, 2R, 3R 1B, 2B, 3B

b 1R, 2R, 3B 1B, 2B, 3R

c 1R, 2B, 3B 1B, 2R, 3R

d 1R, 2B, 3R 1B, 2R, 3B

As we can see, there are 4 'types' of large envelopes that can be prepared under the set 
condition. For each type of the envelopes goes different probability of its occurrence:

wa for a type; wb for b type; wc for c type;  wd for d type. 

We mark N as total number of big envelopes Alice and Bob open. Number of envelopes 
which fit for certain type of large envelope can be counted like this:

N a=wa⋅N (1) N c=wc⋅N (3)
N b=wb⋅N (2) N d=wd⋅N (4)

Because there are no other possibilities, it must hold that

 N aN bN cN d=N (5)
wa⋅Nwb⋅Nw c⋅Nwd⋅N=N ...  divided by N:

wawbw cwd=1 (6)

     as well it's obvious that wa ,wb ,w c ,wd≥0

and therefore wa ,wb ,w c ,wd≤1

Now let's have a look at probabilities of couple of combinations which Alice and Bob might 
get. We use the previous table for this.

P 1R ,2 R=
1
3


2

⋅w cwd  (7)



P 2R ,3R=1
3


2

⋅wbwd  (8)

P 1R ,3 R= 1
3


2

⋅wbwc  (9)

It should hold that 
P 1R ,2R P 2R ,3R≥P 1R ,3 R (10)

, which is one of so-called Bell's inequalities [1]
We check if the inequality is valid by substituting from (7), (8) and (9) in (10):

1
3


2

⋅wcwd 1
3


2

⋅wbwd ≥ 1
3


2

⋅wbwc

We simplify the inequality to:
w cwdwbwd≥wbw c

wdwd≥0

which is always true, so we proved that the inequality holds for our thought experiment.

Next,  we  studied  the  validity  of  Bell's  inequalities  for 
completely  randomly  prepared  large  envelopes.  In  this  case  the 
probability of each event can be calculated in the following way. Let 
the quantity we are interested in be the probability of (1R, 2R). We 
can imagine this situation as on figure 3. Firstly we counted how 
many combinations can be substituted instead of question marks and 
with the knowledge of total number of possibilities we counted this 
probability.

P 1R ,2R=16
64
⋅1

9
≈0,027

Then we also tried to count probabilities for other combinations of discs and we found out that for 
each combination the probabilities are the same. Thus we expect that all of Bell's inequalities are 
true.

3 Violation of Bell's inequalities
Now, let's think about another experiment. In this experiment Alice and Bob measure spin of 

electrons (which can only be either plus or minus – equivalent of red and blue disks). There is pair 
of electrons in some special state (not to be described here) and Alice measures one of them and 
Bob the second one.  In addition to this, they also choose angle of the measuring device (equivalent 
of numbers on small envelopes). For us will be enough to choose three fix vectors of measurements 
(which determine us the angles). Let's denote  these vectors by n1, n2, n3 .

Quantum theory tells us, that in an arrangement in which Alice is measuring the spin of her 
electron along the axis  n and Bob is measuring his electron along the axis n ' , the probability 

that  they obtain the same direction of spins is  q n ,n ' =1
2
⋅1−cos (11),  where  ϑ is  angle 

enclosed by vectors  n ,n ' . Now we use this probabilities in Bell's inequality. First we need to 
write down the Bell's inequality appropriate for our case:

q  n1, n2q  n2, n3≥q  n1, n3



Now we substitute in the Bell's inequality from (11)
1
2
⋅1−cos12 

1
2
⋅1−cos23≥

1
2
⋅1−cos13  (12)

where 12 is angle between vectors n1, n2

23 is angle between vectors n2, n3

13 is angle between vectors n1, n3

And it also holds that 
1223=13 (13)

We continue solving the inequality (12):
1≥−cos13cos12cos23 (14)

We can substitute for 13 from (13) and we get an inequality with two variables
1≥−cos 1223 cos12cos23 (15)

We find the maximum of this function at

 12=23=

4 .

Now, when we substitute this value back in (15), we see that the inequality doesn't hold:

1≥−cos 
4


4
cos 

4
cos 

4

1≥ 2 , which is never valid

Which means that this Bell's inequality is violated. Since all causal processes should follow every 
Bell's inequality we conclude that quantum theory violates causality.

4 Conclusion
We have shown that causality does not work all the time and that it cannot explain all events 

that occur in nature. With use of Bell's inequalities we can see mathematical proof of this along with 
calculated  example  of  situation  when Bell's  inequalities  and  therefore  causality don't  hold.  We 
mention that experiments similar to that studied in Section 3 can actually be carried out, thus the 
causality of quantum theory can be verified, as it  has been reported, for the first time in Ref. [2].
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