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Abstract

Our miniproject studied the principles of causality and their relation to Bell’s inequalities. We were introduced
into the problem of causality and proved that the Bell’s inequalities are not violated in causal systems. en we
proved that some Bell’s inequalities may be violated in non-causal systems, simulated some of the systems where
this occurs and found maximum possible violations.

1 Introduction
e casual systems are systems in whi some events are indirectly determined by some other events. is plays
an important role in antum meanics.

2 ought experiment
As a model of causal system, we imagined a thought experiment. Assume that we have three people (A,B,C) siing
in three rooms.
Certain rules apply:
C can comunicate with A and B and A cannot comunicate with B.
C receives a prepared envelope. In this large envelope there are two medium-sized envelopes. Within ea medium-
sized envelope, there are three small envelopes.
ere is a red or blue disc in ea of these small envelopes. C takes the large envelope and randomly distributes
the medium-sized envelopes to A and B. A and B open the envelopes and randomly pi one of the small envelopes.
en they look at the disc inside and write down the color.

Figure 2 shows the example of what they may have wrien down.

A B
1R 2B
3R 3B
1B 1R
2B 1R
2R 3B
1B 1R
3R 2R

Figure 1: Possible results

As you can see there is one important rule: C only puts discs of opposite colors in the envelopes denoted
by the same number. (e two small envelopes denoted by the same number coming from a single large enve-
lope are anticorrelated.)
is means that when A opens the first envelope, he knows what is in B’s envelope of the same number.

According to this rule there exist only four different types of large envelopes (figure 1)
We will call these four types of envelopes a, b, c and d.

e evelopes are osen randomly, with their respective probabilities Wa, Wb, Wc and Wd.
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Figure 2: ought experiment seme
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Figure 3: A large envelope

e probability of A oosing the first envelope and finding a red disc and B oosing the first envelope and
finding a red disc is zero.

P (1R, 1R) = 0

the probability of A oosing the second envelope and finding a red disc and B oosing the second envelope
and finding a blue disc is given by this formula:

P (2R, 2B) =
1

32
1

2

because there are three small envelopes to pi from.
e probability of A oosing 1B and B oosing 3R is:

P (1B, 3R) =
1

32
(Wc +Wd)

1

2
, (1)

where and similar formulas for the other probabilites.

ere we can get to the Bell’s inequalities. One of them says that

P (1R, 2R) + P (2R, 3R) ≥ P (1R, 3R)

Whi leads to:
1

9
(Wc +Wd)

1

2
+

1

9
(Wb +Wd)

1

2
≥ 1

9
(Wb +Wc)

1

2

Simplified:
Wd ≥ 0

Whi always holds, because Wd is a probability. is proves that Bell’s inequality in Eq. (1) is always satisfied.
is would be true for any general oice of large envelopes (not only in this case with opposite colors).

ere are many other Bell’s inequalities.
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Wa R, R, R B, B, B
Wb R, R, B B, B, R
Wc R, B, R B, R, B
Wd R, B, B B, R, R

Figure 4: e four types of envelopes

3 Simulation
In the simulation, it was our task to numerically verify that Bell’s inequalities are valid. We programmed a math-
ematical model in C++ whi generated random envelopes with certain degrees of anticorrelation. e degree of
anticorrelation was given by the factor ε.
If the ε = 0, the two medium envelopes are anticorrelated the most.
If the ε = 1, the two medium envelopes are independent and totally random.

To verify the Bell’s inequality, we computed values of the quantity:

f = P (1R, 2R) + P (2R, 3R)− P (1R, 3R),

whi should be non-negative when the inequality holds and negative when it is violated.

Figure 5 shows the results from our simulation.
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Figure 5: Results of the simulation. Negative values indicate violation of Bell’s inequality.

We have obtained the first three bars, complying with the above rules. en we have introduced a violation
of causality with the following rule. When A opens the first envelope and finds a blue disc, then the disc in the third
envelope of B turns blue.
e fourth and the fih bars correspond to this case.
e Bell’s inequality we used detects the violation only in the case when Wa = Wb = Wc = 1

3 and Wd = 0.
e violation in case of equal probabilities is undetected, and we would need to use a different Bell’s inequality to
detect it.
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4 Violation of Bell’s inequalities byantum Meanics
We can move this experiment into the quantum domain, where we observe quantum particles instead of colored
discs. is experiment is called e Bell Test of antum Meanics.
e setup of this experiment is fundamentally the same as the first thought experiment’s.

Instead of the medium-sized envelopes, we use a pair of correlated electrons, send them to A and B and let
them measure their spins. A’s and B’s measuring apparatuses consist of three pairs of magnets shown in figure 6.
A and B can decide whi set of magnets they use for measuring the electron’s spin. is corresponds to piing
a small envelope out of the medium envelope. e spin of the electron can be measured in any direction by a pair of
magnets. and can take the values of ±~

2 . e correlations between the two electrons is su that, when their spins
are measured in the same direction, they yield opposite results.

e− x

y

ϑi

Figure 6: Spin analyzing apparatus

Let ϑi be the angle between a fixed axis and the axis of the i-th pair of magnets.
en the difference between two angles is ϑ1 − ϑ2 = ϑ12.

For two arbitary directions, the probability of obtaining the same results is given by the antum Meanics
formula:

P (i+, j+) =
1

9
qϑij =

1

18
(1− cosϑij)

en we subtitute to Bell’s inequality

1

18
(1− cosϑ12) +

1

18
(1− cosϑ23) ≥

1

18
(1− cosϑ13)

We found the function determining when Bell’s inequalities hold and when they do not.

f(ϑ12, ϑ23) = 1 + cos (ϑ12 + ϑ23)− cosϑ12 − cosϑ23

Analytically, we have found the minima and the maxima of the function.
e minima are at [+π

4 ,+
π
4 ] and [−π

4 ,−
π
4 ].

e maxima are at [+π
4 ,−

π
4 ] and [−π

4 ,+
π
4 ].

We found at whi points the inequality is violated the most. is can be seen in figure 7.
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Figure 7: Degree of violation of Bell’s inequality

5 Conclusions
In this miniproject we have proven that not every physical system is causal and that Bell’s inequalities do not always
hold. We have proven that Bell’s inequalities always hold in a causal system.
e Bell Test of antum Meanics has a great potential to be the keystone for quantum cryptography. e me-
anism studied in this paper may be used to determine whether transported data was intercepted or not.

6 Anowledgements
We would like to thank FNSPE CTU for hosting “Týden vědy 2010” and our supervisor, MSc. Aurél Gábris, PhD.,
for tuition.

7 References
[1] Péter Hraskó: A Bell-egyenlőtlenség. Fizikai szemle 7, 257-264 (1984)

[2] A. Einstein, B. Podolsky, and N. Rosen: Can antum-Meanical Description of Physical Reality Be Con-
sidered Complete? Phys. Rev. 47, 777–780 (1935)

[3] J. S. Bell: ”Speakable and Unspeakable in antum Meanics.” Cambridge University Press (1988)

[4] J. F. Clauser & A. Shimony: ”Bell’s theorem: experimental tests and implications” Rep. Progr. Phys. 41, 1881
(1978)

5


