Měrný náboj elektronu

Miroslav Frantes¹, Tomáš Hejda², Lukáš Mach³, Ondřej Maršálek⁴, Michal Petera⁵

¹miro11@seznam.cz; Gymnázium Benešov, ²tohe@centrum.cz; Gymnázium Christiana Dopplera, Praha 5 ³machweb@seznam.cz; Gymnázium Kladno-Sítná ⁴marsaleko@gytool.cz; Gymnázium Olomouc-Hejčín ⁵mpj@centrum.cz; Gymnázium Voděradská, Praha 10

supervizor: Marie Svobodová, FJFI ČVUT Praha

Abstrakt

Měrný náboj elektronu je jednou ze základních fyzikálních konstant a přesné určení jeho hodnoty je nutné pro mnoho fyzikálních měření. Měrný náboj elektronu je možno určit z účinků magnetického pole na pohybující se elektrony. Lze použít magnetického pole podélného či příčného ke směru pohybu elektronového svazku. My jsme zvolili populárnější metodu — příčné magnetické pole.

1 Motivace

Jak už jsme naznačili, přesná hodnota měrného náboje elektronu je důležitá z důvodu jejího dalšího použití. Např. při Millikanově pokusu je změřen náboj elektronu, což nám umožňuje určit také jeho hmotnost. Zároveň se jedná o velmi zajímavý a vizuálně poutavý pokus. Urychlené elektrony ionizují zředěný plyn, který podél trajektorie elektronu modře světélkuje.

Hodnotu měrného náboje elektronu poprvé změřil J. J. Thompson roku 1897.

2 Aparatura

Při pokusu jsme použili následující vybavení.

- zdroje napětí (6,3 V ~, 0-6 A =, 0-500 V =)
- Helmholtzovy cívky a katodová trubice vyráběné firmou Leybold-Heraeus
- měřící zařízení (zrcátko + stupnice)
- 2 tyčové magnety
- fotoaparát

Helmholtzovy cívky jsme připojili ke stabilizovanému stejnosměrnému zdroji s proudem volitelným v rozsahu od 0 do 6 A. Nepřímé žhavení katody jsme připojili ke zdroji 6,3 V. Urychlovací anodu jsme připojili ke zdroji s napětím volitelným v rozsahu od 0 do 500 V. Zapojení jsme provedli podle schématu dodaného výrobcem sady. Baňka katodové trubice je umístěna uprostřed Helmholtzových cívek tak, aby v místě pokusu bylo zajištěno homogení magnetické pole. Elektrony jsou z katody urychlovány ve směru kolmém na vektor magnetického pole cívek. Zapojení cívek je třeba volit tak, aby výsledná dostředivá síla směřovala do středu baňky.

HELMHOLTZOVY CÍVKY, TRAJEKTORIE POHYBU EL., ZDROJ ELEKTRONŮ, SKLENĚNÁ BAŇKA

Obrázek 1: Schéma aparatury

3 Teorie

Elektrony urychlované elektrickým polem získají energii

$$E = eU$$

Jedná se o kinetickou energii

$$E_k = \frac{1}{2}mv^2$$

Vzorce sloučíme a vyjádříme výslednou rychlost elektronů po urychlení

$$v = \sqrt{2U \frac{e}{m}} \tag{1}$$

Rychlost elektronů po termoemisi z katody je ve srovnání s touto rychlostí malá, a proto ji můžeme zanedbat. Zároveň je však tato rychlost řádově 2-3 % rychlosti světla, tudíž nebudeme uvažovat relativistické vztahy.

Na elektron pohybující se pouze v magnetickém poli kolmo k jeho magnetickým indukčním čarám působí síla o velikosti

$$F_L = evB$$

Tato síla působí v každém okamžiku kolmo na směr pohybu elektronů i na směr magnetických indukčních čar, působí proto jako síla dostředivá podle vztahu

$$F_d = ma_d = m\frac{v^2}{r}$$

Síla magnetická se rovná síle dostředivé a po sloučení obou vztahů a dosazení rychlosti z rovnice (1) dostaneme vztah pro hodnotu měrného náboje elektronu

$$\frac{e}{m} = \frac{2U}{B^2r^2}$$

Magnetická indukce Helmholtzových cívek je přímo úměrná součinu protékajícího proudu I a konstanty k dané geometrií cívek. V našem případě je hodnota konstanty

$$k = 7,81 \cdot 10^{-4} \ kg \cdot s^{-2} \cdot A^{-2}$$

Výsledný vztah pro měrný náboj elektronu tedy je

$$\frac{e}{m_e} = \frac{2U}{k^2 I^2 r^2}$$

Urychlovací napětí i proud v cívkách nastavíme a průměr kruhové trajektorie elektronů změříme pomocí měřítka, které je součástí sady.

4 Měření a pozorování

Postupně nastavujeme zvolené hodnoty proudu v cívkách (0,75–2 A) a pro každou hodnotu volíme tři různé hodnoty urychlovacího napětí (celkem v rozsahu 80–200 V). Poloměr kružnice změříme a všechny hodnoty zaznamenáme do tabulky. Pro každé tři údaje vypočítáme hodnotu e/m a vypočteme průměr všech zjištěných hodnot.

V první části pokusu jsme zvolili nesprávný postup měření průměru kruhové trajektorie, což ilustruje přiložený nákres. Zjistili jsme však, že při pohledu z jednoho místa není možné průměr správně změřit. Proto jsme navrhli novou metodu měření průměru kružnice, která je znázorněna na druhém nákresu.

Pokud není směr elektronů zcela kolmý k vektoru magnetické indukce, mají elektrony složku rychlosti rovnoběžnou se směrem magnetické indukce. Tato složka není magnetickým polem ovlivněna a elektrony opisují šroubovici. Pokud navíc přidáme magnetické pole tyčových magnetů z různých směrů, trajektorie elektronů může dosáhnout značně komplikovaných tvarů. Pomocí jistých konfigurací lze také dosáhnout efektu magnetického zrcadla či magnetické pasti.

Obrázek 2: Nesprávný postup

Obrázek 3: Správný postup

5 Výsledky

V první části experimentu (měření 1–60), kdy jsme používali nevhodnou metodu měření průměru kružnice, jsme získali hodnotu $e/m = 2,91 \cdot 10^{11} \ C \cdot kg^{-1}$. Po úpravě metody měření (měření 61–72) jsme získali hodnotu

$$e/m = 1,65 \cdot 10^{11} C \cdot kg^{-1}$$

což je v dobré shodě s hodnotou uváděnou v literatuře, která je $e/m=1,76\cdot 10^{11}\;C\cdot kg^{-1}.$

	U[V]	$I[A]d_1[m]$	$ d_2[m]$	$r\left[m ight]$	$e/m [10^{11} C \cdot kg^{-1}]$		U[V]	I[A]	$d_1[m]$	$d_2 [m]$	$r\left[m ight]$	$e/m [10^{11} C \cdot kg^{-1}]$
1.	080	0,75 0,095	0,173	0,390	3,0659	37.	080	0,75	0,097	0,174	0,385	3,1461
2.	100	0,75 0,095	0,187	0,460	2,7547	38.	100	0,75	0,097	0,187	$0,\!450$	2,8785
3.	120	0,75 0,095	0,198	0,515	2,6373	39.	120	0,75	0,097	0,198	0,505	2,7428
4.	120	1,00 0,095	0,169	0,370	2,8741	40.	120	1,00	0,092	0,165	0,365	2,9534
5.	140	1,00 0,095	0,175	0,400	2,8690	41.	140	1,00	0,092	$0,\!172$	0,400	2,8690
6.	160	1,00 0,095	0,182	0,435	2,7724	42.	160	1,00	0,092	$0,\!180$	$0,\!440$	2,7098
7.	120	1,50 0,098	0,143	0,225	3,4543	43.	120	1,50	0,097	$0,\!145$	0,240	3,0360
8.	140	1,50 0,098	0,147	0,245	3,3989	44.	140	1,50	0,097	$0,\!150$	0,265	2,9052
9.	160	1,50 0,099	0,151	0,260	3,4492	45.	160	1,50	0,097	$0,\!153$	0,280	2,9740
10	. 160	2,00 0,090	0,131	0,205	3,1209	46.	160	2,00	0,091	$0,\!135$	0,220	2,7098
11	. 180	2,00 0,091	0,139	0,240	2,5616	47.	180	2,00	0,091	$0,\!137$	0,230	2,7892
12	2. 200	2,00 0,098	0,142	0,220	3,3872	48.	200	2,00	0,091	0,141	0,250	2,6231
13	. 080	0,75 0,091	0,176	0,425	2,5817	49.	080	0,75	0,097	$0,\!176$	0,395	2,9888
14	. 100	0,75 0,091	0,194	0,515	2,1978	50.	100	0,75	0,097	$0,\!186$	0,445	2,9436
15	. 120	0,75 0,091	0,202	0,555	2,2709	51.	120	0,75	0,102	0,200	$0,\!490$	2,9133
16	6. 120	1,00 0,091	0,174	0,415	2,2846	52.	120	1,00	0,095	$0,\!174$	0,395	2,5218
17	. 140	1,00 0,091	0,182	0,455	2,2173	53.	140	1,00	0,095	$0,\!180$	0,425	2,5414
18	. 160	1,00 0,092	0,190	0,490	2,1850	54.	160	1,00	0,095	0,181	$0,\!430$	2,8373
19	. 120	1,50 0,090	0,141	0,255	2,6893	55.	120	1,50	0,094	0,142	0,240	3,0360
20	. 140	1,50 0,089	0,145	0,280	2,6023	56.	140	1,50	0,094	0,147	0,265	2,9052
21	. 160	1,50 0,090	0,150	0,300	2,5907	57.	160	1,50	0,094	0,151	0,285	2,8706
22	2. 160	2,00 0,089	0,134	0,225	2,5907	58.	160	2,00	0,075	0,153	0,390	0,8623
23	. 180	2,00 0,089	0,131	0,210	3,3458	59.	180	2,00	0,072	0,158	$0,\!430$	0,7980
24	. 200	2,00 0,088	0,140	0,260	2,4252	60.	200	2,00	0,070	0,155	0,425	0,9076
25	080	0,75 0,105	0,175	0,350	3,8067	61.	200	2,00	0,089	0,152	0,315	1,6522
26	5. 100	0,75 0,105	0,188	0,415	3,3846	62.	180	2,00	0,089	0,150	0,305	1,5861
27	. 120	0,75 0,105	0,200	$0,\!475$	3,1002	63.	160	2,00	0,089	0,146	0,285	1,6147
28	8. 120	1,00 0,100	0,165	0,325	3,7251	64.	160	1,50	0,089	0,161	0,360	1,7991
29	. 140	1,00 $0,103$	0,171	0,340	3,9709	65.	140	1,50	0,089	0,160	0,355	1,6188
30	. 160	1,00 $0,103$	0,178	0,375	3,7306	66.	120	1,50	0,089	0,155	0,330	1,6058
31	. 120	1,50 $0,105$	0,140	$0,\!175$	5,7101	67.	160	2,00	0,089	0,145	0,280	1,6729
32	2. 140	1,50 $0,105$	0,144	$0,\!195$	5,3654	68.	180	2,00	0,089	0,148	0,295	1,6954
33	. 160	1,50 $0,105$	0,148	0,215	5,0441	69.	200	2,00	0,089	$0,\!153$	0,320	1,6010
34	. 160	2,00 0,091	0,134	0,215	2,8373	70.	120	1,00	0,089	$0,\!188$	$0,\!495$	1,6058
35	. 180	2,00 0,091	0,137	0,230	2,7892	71.	100	1,00	0,089	0,180	$0,\!455$	1,5838
36	5.200	2,00 0,090	0,141	0,255	2,5212	72.	080	1,00	0,089	0,167	0,390	1,7246

365|2,9534400|2,8690440|2,7098240|3,0360265|2,9052280|2,9740220|2,7098230|2,7892250|2,6231395|2,9888|445|2,9436490 2,9133 395|2,5218425|2,5414430|2,8373|240|3,0360265|2,9052285|2,8706|390 0,8623 430|0,7980425 0,9076 315|1,6522305|1,5861285|1,6147360 1,7991 355|1,6188330|1,6058280|1,6729295|1,6954320 1,6010 495|1,6058455|1,5838390 1,7246

Poděkování

Chtěli bychom poděkovat organizátorům Fyzikálního týdne, zvláště pak panu Vojtěchu Svobodovi za poskytnutí počítače, práci přesčas i za motivaci k revizi postupu a k zopakování pokusu. Také bychom chtěli poděkovat našemu supervisorovi slečně Marii Svobodové.

Reference

- [1] Douglas Early and Conley Stutz: Measurement of e/m by Measuring Radius of Path in Magnetic Field http://www.bradley.edu/las/phy/labs/202lab/m.html
- [2] Kolektiv katedry fyziky: Fyzikální praktikum II pp.127-132, Ediční středisko ČVUT,1989
- [3] prof. Ing. Zdeněk Janout CSc.: přednáška pro účastníky Fyzikálního týdne 2002