Does God play dice?

How to test if quantum theory is correct? Artur Uldrich, Bara Siptakova, Klara Kasalova*, Zdenek Plesek

Einstein—Podolsky—Rosen Paradox

- Two anti-correlated electrons
 - Measure both spins along the same axis: yields opposite results ($\uparrow\downarrow$ or $\downarrow\uparrow$)
 - Measure only one spin: the other spin becomes known (immediately)

Can quantum mechanics violate the constraint of speed of light?

Only when the Bell's ring!

Envelope experiment

- Big envelope: two medium envelopes
- Medium envelope: three small envelopes
 - three detector angles
- Red and blue dots: electron spin (\uparrow or \downarrow)

Envelope experiment rules

Correlations

Probability that we see 1r, 2r at the table:

Correlations: p(1r, 1r) = p(2r, 2r) = p(3r, 3r) = 0

p(1r, 2r)

Bell's inequality

$$p(1r, 2r) + p(2r, 3r) - p(1r, 3r) \ge 0$$

Does quantum theory satisfy this?

Does quantum theory satisfy this?

Quantum computer

Simulate electron spin by qubits

- Web interface to the IBM Q
 - Line=qubit
 - Time runs from left to right
 - Gates are placed on lines

- Experiment
 - Bell state: perfectly anti-correlated
 - Rotate **qubit** instead of detector

New experiment		New	Save Save as
Switch to Qasm Editor	Backend: ibmqx4 O My Units: 15 O Experiment Units: 3 O	Run	Simulate St
q[0] q[1]		GATES () ICI X S S ¹	Advanced YZH + TT ¹
बाँध ॥ बाँध ॥ बाँध ॥		BARRIER	
¢ 0 %/			

Results

Bell's inequality: $p(1r, 2r) + p(2r, 3r) - p(1r, 3r) \ge 0$ $0.74 + 0.223 - 0.353 = -0.056 \ge 0$

Results

Conclusions

- Bell's assumptions
 - 1. Result is predetermined (we only choose the "small envelopes")
 - 2. Measurements do not influence each other
- Quantum mechanics violate Bell's inequalities
 → Either 1. or 2. is wrong
- In the quantum computer:
 - Assumption 2. is not guaranteed: due to proximity of the qubits