Využití rezonance ke zkoumání kinetiky únavových trhlin

Ngoc Hung Hoang

Gymnázium a SOŠ Dr. Václava Šmejkala, Stavbařů 5, Ústí nad Labem hoangjosef@gmail.com

Martin Osowski První soukromé jazykové gymnázium, Brandlova 895 Hradec Králové martinosowski@gmail.com

> Marek Štefaník Masarykovo gymnázium, Jičínská 528, Příbor marek.stefanik@gypri.cz

> > 19. června 2018

Abstrakt

Ze statistik vyplývá, že většina provozních poruch je způsobena únavou materiálu. Tato práce se zabývá únavovou odolností materiálů určených pro letecký průmysl, konkrétně hliníkových slitin 7075, 7475 a 2024. Dílčími tématy práce jsou ověření složení testovaných materiálů a $\frac{da}{dN}(K)$ křivka, popisující závislost rychlosti šíření únavové trhliny na faktoru intenzity napětí.

Složení testovaných materiálů bylo stanoveno pomocí rentgenové fluorescenční spektroskopie. S výjimkou zvýšené koncentrace Si u slitiny 7475 a Ti u slitiny 2024 nebyly pozorovány významnější rozdíly mezi nominálním a zjištěným složením.

 $\frac{\mathrm{d}a}{\mathrm{d}N}(K)$ křivky byly stanoveny na miniaturních vzorcích $3\times4\times32\,\mathrm{mm}$ na rezonančním únavovém strojku SF-test. Nejnižší rychlosti růstu únavových trhlin vykazoval vzorek ze slitiny 2024. Při konkrétní volbě materiálu musí však být zohledněny i pevnostní vlastnosti, které jsou u slitiny 2024 výrazně nejhorší.

1 Úvod

Únavové trhliny vznikají v důsledku kumulujícího se cyklického opotřebení materiálu. K tomu dochází při překročení tzv. meze únavy. U leteckého provozu nelze tomuto překročení zabránit (narozdíl od např. provozu železničního), a jsou proto třeba pravidelné kontroly.

K určení rychlosti šíření trhliny slouží tzv. $\frac{da}{dN}(K)$ křivka. Ta je stanovena na základě měření rychlosti šíření v závislosti na "hnací síle trhliny", kterou je faktor intenzity napětí K. Standardní prahová hodnota¹ K přísluší rychlosti šíření 10⁻¹⁰ metru za cyklus. Pro nižší hodnoty K se trhlina šíří zanedbatelnou rychlostí.

¹Prahová hodnota – Hodnota, od níž probíhá měření.

2 Teoretická část

2.1 Napětí a deformace v materiálech

Při působení síly na těleso je materiál deformován, přičemž deformace závisí na působící síle F. Mechanické napětí vznikajícíu uvnitř materiálu $\sigma = \frac{F}{S}$ je přímo úměrné této síle. Deformační účinky působící síly jsou pak závislé na vznikajícím napětí. Je-li napětí nižší než mez pružnosti σ_a , těleso se po odtížení vrátí do původního stavu. Při napětí za mezí přužnosti dochází k plastické deformaci, která přetrvává i po odtížení.

Při opakované plastické deformaci dochází k ději, který označujeme jako únava materiálu. Dochází při něm k poškozování, které se následným opakováním deformací kumuluje, vznikají únavové trhliny a může dojít až k úplnému porušení nosného průřezu.

"Hnací sílu trhliny" můžeme popsat pomocí faktoru intenzity napětí K, který závisí na délce trhliny a, nominálním napětí σ a tvarové funkci popisující geometrii prvku $\beta(\frac{a}{w})$ následujícím způsobem [1]:

$$K = \sigma\beta(\frac{a}{w})\sqrt{\pi a} \tag{1}$$

Problém únavy materiálu je možné řešit několika různými způsoby. Nejdříve je nutné udělat únavové zkoušky, jejichž cílem je prozkoumat vznik a rychlost šíření trhlin v materiálu. Na základě výsledků únavových zkoušek se pak vybere jedna z metod prevence důsledků:

- Safe-life vůbec nedojde k iniciaci. Vyžaduje kvalitní povrchy srovnatelné se zkoušenými (leštěnými) vzorky.
- Damage tolerance může dojít ke vzniku trhliny, ale musí být odhalena při defektoskopické kontrole.
- Fail-safe při provozu může dojít k poruše, ale nesmí ohrozit bezpečnost

V našem projektu jsme se zabývali metodou Damage tolerace, která je v leteckém průmyslu nejčastěji používanou metodou. Tato metoda má za cíl při pravidelných kontrolách najít vzniklé trhliny dříve, než zapříčiní poruchu. K tomu je nutné stanovit kontrolní interval tak, aby trhlina šířící se podle závislosti $\frac{da}{dN}(K)$ charakterizující daný materiál nepřekročila kritickou délku.

2.2 Rezonance

Při rezonanci dochází k největšímu přenosu mechanické energie na oscilátor. Zařízení SF-test, které jsme použili, budí kmity v nosníku v jeho základním ohybovém módu. Rezonance je použita i k měřění délky trhliny. Pomocí metody konečných prvků lze určit závislost rezonanční frekvence na délce únavové trhliny. Tato závislost umožňuje vyhodnocení délky trhliny a faktoru intenzity napětí dle vzorce (1) kontinuálně v průběhu experimentu.

Tab. 1: Pevnostní charakteristiky použitých slitin

	7075	7475	2024
Mez kluzu (MPa)	460	520	360
Mez pevnosti (MPa)	550	590	480

3 Experimentální část

3.1 Použité slitiny a jejich vlastnosti

V experimentální části jsme zkoumali šíření trhliny v slitinách hliníku označovaných jako 7075, 7475 a 2024, jejichž pevnostní charakteristiky jsou v Tab. 1, jejich složení pak shrnuje Tab. 2. Zjišťovali jsme nominální složení podle databáze MakeItFrom.com, které jsme následně porovnávali se skutečným složením daného materiálu zjištěným rentgenovou fluorescenční spektroskopií². Z porovnání těchto dvou hodnot můžeme určit rozdíly mezi složením daným výrobcem a reálným složením. [5, 6]

 $^{^2}$ Rentgenová fluorescenční spektroskopie – Metoda zkoumající složení látek spočívající v ozáření látky rentgenovým zářením. Toto záření vyrazí elektron z elektronového obalu atomu a na jeho místo přeskočí elektron s vyšší energií, který přitom vyzáří foton specifické vlnové délky, kterou můžeme změřit.

	7075		7475		2024	
	nominální[2]	zjištěné	nominální[3]	zjištěné	nominální[4]	zjištěné
Al	89,15(225)	90,47(21)	90,1(15)	88,43(27)	92,7(20)	92,84(17)
Zn	$5,\!6(5)$	5,44(7)	$5,\!6(5)$	5,93(8)	0,125(125)	0,038(3)
Mg	2,5(4)	$1,\!84(21)$	2,25(35)	2,26(28)	$1,\!5(3)$	1,38(17)
Cu	1,6(4)	1,29(2)	1,55(35)	1,64(2)	4,35(55)	$3,\!80(5)$
Cr	0,23(5)	0,23(1)	0,215(35)	$0,\!168(9)$	$0,\!05(5)$	-
${\rm Fe}$	0,25(25)	0,125(6)	0,06(6)	0,078(5)	0,25(25)	0,122(7)
Ti	0,1(1)	0,26(2)	0,03(3)	-	0,075(75)	$0,\!89(4)$
Si	0,2(2)	0,345(10)	0,05(5)	$1,\!42(2)$	0,25(25)	0,248(9)
Mn	0,15(15)	-	0,03(3)	-	0,6(3)	0,64(2)
Zr	0,125(125)	0,0029(2)	-	0,0052(3)	0,1(1)	0,0177(4)
Zbytky	0,075(75)	-	0,075(75)	0,069(2)	0,075(75)	-

Tab. 2: Složení použitých slitin

3.2 SF-test

Rezonanční únavový strojek, kde se určuje délka trhliny z rezonanční frekvence vzorku. V průběhu experimentu kmitá vzorek v rezonanci, která je udržována pomocí fázového závěsu. [7]

Vzorek má tvar kvádru o rozměrech $(3 \times 4 \times 32)$ mm, který má uprostřed stěny (3×32) mm vrub kolmo k nejdelší ose. Z tohoto vrubu se při testu šíří trhlina (obr. 1)

Obr. 1: Trhlina ve vzorku šířící se z vrubu

4 Výsledky

4.1 Závislost rychlosti šíření trhliny na faktoru intenzity napětí

Průběh zkoušky byl následující: exponenciální snižování rychlosti šíření trhliny $\frac{da}{dN}$ z 10⁻⁹ m/cyklus na 10⁻¹⁰ m/cyklus, odpovídající prahové hodnotě K_{max} . Následuje exponenciální zvyšování K_{max} tak, aby pro délku 2, 4 mm byl dosažen faktor intenzity napětí $K_{max} = 15 \text{ MPA}\sqrt{\text{m}}$.

pro délku 2,4 mm byl dosažen faktor intenzity napětí $K_{max} = 15 \text{ MPA}\sqrt{\text{m}}$. V jistém omezeném intervalu platí pro rychlost šíření trhliny $\frac{da}{dN}$ (kde *a* je délka trhliny a *N* je počet cyklů) a faktor intenzity napětí K_{max} Parisův vztah [8], kde *C* a *m* jsou materiálové konstanty.

$$\frac{\mathrm{d}a}{\mathrm{d}N} = CK_{max}^m \tag{2}$$

Konstanty Parisova vztahu byly stanoveny pro rychlosti šíření vyšší než 10^{-8} a 10^{-7} m/cyklus pro vzorky 7475(a78), 7075(3b10), 7075(3b14), resp. 2024(b13).

Obr. 2: SF-test – rezonanční únavový strojek

Obr. 3: Závislost rychlosti šíření trhliny na faktoru intenzity napětí

Námi zjištěné hodnoty konstantCam Parisova vztahu jsou shrnuty v Tab. 3. Tyto hodnoty jsou v souladu s hodnotami uvedenými v[1]

	7075	7475	2024
C	$4,67 \cdot 10^{-10}$	$2,98 \cdot 10^{-10}$	$1,43 \cdot 10^{-10}$
m	2,509	2,863	3,209

Tab. 3: Experimentálně zjištěné hodnoty Parisova vztahu

5 Závěr

V rámci miniprojektu byla provedena měření rychlosti růstu únavových trhlin u tří vybraných slitin používaných v leteckém průmyslu. SF-testem byly stanoveny křivky $\frac{da}{dN}(K)$. Slitiny 7075 a 7475 podobného složení, ale rozílné čistoty vykazují velmi podobné křivky $\frac{da}{dN}(K)$. Slitina 2024 vykazuje vyšší prahovou hodnotu faktoru intenzity napětí a výrazně nižší rychlost růstu trhliny pro $K < 7 \text{ MPa}\sqrt{\text{m}}$. Na druhou stranu má slitina 2024 horší pevnostní charakteristiky než zbylé dvě, což je také nutno zohlednit při výběru materiálu.

Reference

- [1] J. Kunz, Aplikovaná lomová mechanika. Praha: Česká technika nakladatelství ČVUT, 1991.
- [2] Iron Boar Labs Ltd., "7075-T651 Aluminium :: Makeitfrom.com," 2018. [Online; cit. 19. 6. 2018].
- [3] Iron Boar Labs Ltd., "7475-T651 Aluminium :: Makeitfrom.com," 2018. [Online; cit. 19. 6. 2018].
- [4] Iron Boar Labs Ltd., "2024-T651 Aluminium :: Makeitfrom.com," 2018. [Online; cit. 19. 6. 2018].
- [5] O. Kovářík, P. Haušild, J. Čapek, J. Medřický, J. Siegl, R. Mušálek, Z. Pala, N. Curry, and S. Björklund, "Resonance bending fatigue testing with simultaneous damping measurement and its application on layered coatings," *International Journal of Fatigue*, vol. 82, pp. 300–309, 1 2016.
- [6] O. Kovářik, A. Janča, and J. Siegl, "Fatigue crack growth rate in miniature specimens using resonance," *International Journal of Fatigue*, vol. 102, pp. 252–260, 9 2017.
- [7] H. Lauschmann and O. Kovářík, "A Contribution to the Physical Interpretation of the Morphology of Fatigue Fracture Surfaces," *Key Engineering Materials*, vol. 592-593, pp. 107–112, 11 2013.
- [8] P. C. Paris, M. P. Gomez, and W. E. Anderson, "A rational analytic theory of fatigue," The Trend in Engineering, vol. 13, pp. 9–14, 1961.